metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.41D6, C6.52+ (1+4), Dic3⋊D4⋊2C2, C12⋊7D4⋊4C2, D6⋊C4⋊2C22, C24⋊4S3⋊3C2, C23.9D6⋊2C2, (C2×D12)⋊4C22, (C2×C6).38C24, C4⋊Dic3⋊6C22, C22⋊C4.87D6, (C22×C4).61D6, C12.48D4⋊4C2, C2.9(D4⋊6D6), Dic3⋊C4⋊2C22, (C2×Dic6)⋊3C22, C23.8D6⋊1C2, (C2×C12).131C23, C23.11D6⋊2C2, C3⋊1(C22.32C24), (C4×Dic3)⋊48C22, C22.77(S3×C23), C23.92(C22×S3), (C23×C6).64C22, C22.23(C4○D12), (C22×S3).10C23, (C22×C6).128C23, (C2×Dic3).11C23, C6.D4.2C22, (C22×C12).355C22, (C4×C3⋊D4)⋊34C2, (S3×C2×C4)⋊41C22, C6.16(C2×C4○D4), (C6×C22⋊C4)⋊20C2, (C2×C22⋊C4)⋊17S3, C2.18(C2×C4○D12), (C2×C3⋊D4).7C22, (C2×C6).104(C4○D4), (C2×C4).261(C22×S3), (C3×C22⋊C4).109C22, SmallGroup(192,1053)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C6 — C2×C6 — C22×S3 — C2×C3⋊D4 — C4×C3⋊D4 — C24.41D6 |
Subgroups: 680 in 250 conjugacy classes, 95 normal (31 characteristic)
C1, C2 [×3], C2 [×6], C3, C4 [×10], C22, C22 [×2], C22 [×18], S3 [×2], C6 [×3], C6 [×4], C2×C4 [×2], C2×C4 [×2], C2×C4 [×10], D4 [×9], Q8, C23, C23 [×2], C23 [×6], Dic3 [×6], C12 [×4], D6 [×6], C2×C6, C2×C6 [×2], C2×C6 [×12], C42 [×2], C22⋊C4 [×4], C22⋊C4 [×10], C4⋊C4 [×6], C22×C4 [×2], C22×C4 [×2], C2×D4 [×7], C2×Q8, C24, Dic6, C4×S3 [×2], D12, C2×Dic3 [×6], C3⋊D4 [×8], C2×C12 [×2], C2×C12 [×2], C2×C12 [×2], C22×S3 [×2], C22×C6, C22×C6 [×2], C22×C6 [×4], C2×C22⋊C4, C4×D4 [×2], C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4 [×2], C42⋊2C2 [×2], C4×Dic3 [×2], Dic3⋊C4 [×4], C4⋊Dic3 [×2], D6⋊C4 [×4], C6.D4 [×6], C3×C22⋊C4 [×4], C2×Dic6, S3×C2×C4 [×2], C2×D12, C2×C3⋊D4 [×6], C22×C12 [×2], C23×C6, C22.32C24, C23.8D6 [×2], C23.9D6 [×2], Dic3⋊D4 [×2], C23.11D6 [×2], C12.48D4, C4×C3⋊D4 [×2], C12⋊7D4, C24⋊4S3 [×2], C6×C22⋊C4, C24.41D6
Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×2], C24, C22×S3 [×7], C2×C4○D4, 2+ (1+4) [×2], C4○D12 [×2], S3×C23, C22.32C24, C2×C4○D12, D4⋊6D6 [×2], C24.41D6
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=c, ab=ba, ac=ca, faf-1=ad=da, ae=ea, bc=cb, ebe-1=bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
(1 34)(2 35)(3 36)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)
(2 35)(4 25)(6 27)(8 29)(10 31)(12 33)(13 41)(14 20)(15 43)(16 22)(17 45)(18 24)(19 47)(21 37)(23 39)(38 44)(40 46)(42 48)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 34)(2 35)(3 36)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 47)(14 48)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(23 45)(24 46)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 17 7 23)(2 22 8 16)(3 15 9 21)(4 20 10 14)(5 13 11 19)(6 18 12 24)(25 42 31 48)(26 47 32 41)(27 40 33 46)(28 45 34 39)(29 38 35 44)(30 43 36 37)
G:=sub<Sym(48)| (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33), (2,35)(4,25)(6,27)(8,29)(10,31)(12,33)(13,41)(14,20)(15,43)(16,22)(17,45)(18,24)(19,47)(21,37)(23,39)(38,44)(40,46)(42,48), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,47)(14,48)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,17,7,23)(2,22,8,16)(3,15,9,21)(4,20,10,14)(5,13,11,19)(6,18,12,24)(25,42,31,48)(26,47,32,41)(27,40,33,46)(28,45,34,39)(29,38,35,44)(30,43,36,37)>;
G:=Group( (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33), (2,35)(4,25)(6,27)(8,29)(10,31)(12,33)(13,41)(14,20)(15,43)(16,22)(17,45)(18,24)(19,47)(21,37)(23,39)(38,44)(40,46)(42,48), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,47)(14,48)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,17,7,23)(2,22,8,16)(3,15,9,21)(4,20,10,14)(5,13,11,19)(6,18,12,24)(25,42,31,48)(26,47,32,41)(27,40,33,46)(28,45,34,39)(29,38,35,44)(30,43,36,37) );
G=PermutationGroup([(1,34),(2,35),(3,36),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33)], [(2,35),(4,25),(6,27),(8,29),(10,31),(12,33),(13,41),(14,20),(15,43),(16,22),(17,45),(18,24),(19,47),(21,37),(23,39),(38,44),(40,46),(42,48)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,34),(2,35),(3,36),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,47),(14,48),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(23,45),(24,46)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,17,7,23),(2,22,8,16),(3,15,9,21),(4,20,10,14),(5,13,11,19),(6,18,12,24),(25,42,31,48),(26,47,32,41),(27,40,33,46),(28,45,34,39),(29,38,35,44),(30,43,36,37)])
Matrix representation ►G ⊆ GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[7,0,0,0,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,6,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | C4○D4 | C4○D12 | 2+ (1+4) | D4⋊6D6 |
kernel | C24.41D6 | C23.8D6 | C23.9D6 | Dic3⋊D4 | C23.11D6 | C12.48D4 | C4×C3⋊D4 | C12⋊7D4 | C24⋊4S3 | C6×C22⋊C4 | C2×C22⋊C4 | C22⋊C4 | C22×C4 | C24 | C2×C6 | C22 | C6 | C2 |
# reps | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 2 | 1 | 4 | 8 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_2^4._{41}D_6
% in TeX
G:=Group("C2^4.41D6");
// GroupNames label
G:=SmallGroup(192,1053);
// by ID
G=gap.SmallGroup(192,1053);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,100,675,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=c,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations